

X0224-001A APOLLO CRADLES LTD LATTICE BEAM BOX LIFTING RIG DESIGN CHECK CALCULATIONS

Alan N White B.Sc., M.Eng., C.Eng., M.I.C.E., M.I.H.T.

Malachy Ryan B.Eng, M.Sc., C.Eng., M.I.C.E.

NOV 2017

17-19 Hill Street Kilmarnock KA3 1HA Tel:01563 594 621 Fax:01563 593 056 enquiry@alanwhitedesign.com

Document Revision History

Revision	Description	Author	Revision Date	Checked
A	Initial Issue	LJB	09/11/17	MMR

	Project :	Apollo Lattice Beam Box Lifting Rig				
LHLLULHIIUII SHEEI	Element :	Brief			nwu	
Job Number :		X0224	By: ljb	Date: Nov 17		
	Document No :	001A	Checked: mmr	Date: Nov 17	HLHII WHIIE DESIGII	

Brief

To produce design check calculations for an apollo lattice beam box lifting rig, for Apollo Cradles Ltd.

The rig is constructed from standard scaffold components, Apollo Lattice beam box, GKN legs and scaffold tubes.

Design check is only valid for the support frame, permanent structure is checked by others.

Layout

Design

Design of steel structures	EN 1993-1-1
Technical guidance	TG20:13
Suspended Access	EN 1808

Design assumptions

Scaffold components must be as per TG20:13.

GKN steelwork grade must be S355.

This design does not include a check of the existing structure.

A notional horizontal load of 10% of vertical load is included.

Client to provide 529kg of kentledge at the rear of the rig.

Lattice beams are connected with spigots.

רבו רווו בדוחח כעבבד	Project : Apollo Lattice Beam Box Lifting Rig			AUD	
UNLUULNIIUII JNEET	Element :	Wind Loading) Duu lih	Data: Nav. 47	
	Job Number :	X0224	By: Ijb	Date: Nov 17	
	Document No :	001A	Checked: mmr	Date: Nov 17	TILIIII WIIIIL DEJIUII
Wind Loading	Wind calculation pr	ocedures are	taken from the Eu	uropean standa	rds:
	Eurocode 1 Actions	s on structures	- Wind		BS EN 1991-1-4
	NA: Actions on Stru	uctures - Wind			NA BS EN 1991-1-4
	Safety Requiremen	its on Suspend	led Access Equip	oment	BS EN 1808
Working Wind Load	ding				
	Maximum wind pre	ssure applied	at working wind s	peed is:	
	Basic Wind Speed	V _t	,= 14.00) m/s	(BS EN 1808 T.6)
Dyna	amic Wind Pressure	qt	= k*V _e ² = 0.12	² ² kN/m²	k=0.613
Storm Wind Loadin	g				
	Maximum wind pre-	ssure applied	at storm wind spe	ed is:	
	Basic Wind Speed	Vt	,= 36.00) m/s	(BS EN 1808 T.7)
Dyna	amic Wind Pressure	qt	= k*V _e ² = 0.79	² 9 kN/m²	k=0.613
Applied Wind Press	sure				
	The wind pressure	is applied to the	ne horizontal men	nbers of the latt	ice beam.
Largest H	lorizontal Member = C _{pe} =	45	50 mm 1		(Conservative)
	Solidity =	0.2	25 %		
Applied Worki	ng Wind Pressure = =	0.12*0.45*1.0 0.0	0*0.25)1 kN/m		
Applied Stor	rm Wind Pressure = =	0.79*0.45*1.0 0.0	0*0.25 9 kN/m		

רחו כווו מדומת כווררד	Project :	Apollo Lattice Beam Box Lifting Rig			
LHLLULHIIUII SHEET	Element :	Capacities		ΠϢͶ	
	Job Number :	X0224	By: ljb	Date: Nov 17	
	Document No :	001A	Checked: mmr	Date: Nov 17	HLHII WHIIE DESIGII
Scaffold Tube Capacity					
Scaffold tube capacity is taken from TG20 Table C.1 & C.2:					

Safe Working Moment =	1.33 kNm	
Safe Working Shear Force =	29.20 kN	
Safe Working Axial Force =	8.70 kN	(L _{eff} = 2500mm)
Safe working values ultimate capacities a	are reduced by a factor of 1 re as follows:	.65 in TG20 therefore the
Ultimate Moment = =	1.33*1.65 2.19 kNm	
Ultimate Shear Force = =	29.20*1.65 48.18 kN	

	_		
Lattice	Beam	Capacity	

Lattice Beam capacity is taken from AWD Document S0072-001:

14.36 kN

8.70*1.65

Lattice Beam Allowable Moment =	16.20 kNm
Safe Working Shear Force =	15.80 kN

=

Ultimate Axial Force =

Safe working values are reduced by a factor of 1.65 in AWD Document therefore the ultimate capacities are as follows:

Ultimate Allowable Moment =	26.73 kNm
2No Lattice Beams =	53.46 kNm
Ultimate Safe Working Shear =	26.07 kN
2No Lattice Beams =	52.14 kN

Class A Coupler

Class A coupler capacity is taken from TG20 Table 5.15:

Class A Coupler SWL = 6.10 kN

Safe working values are reduced by a factor of 1.50 in TG20 T5.15 therefore the ultimate capacities are as follows:

Class A Coupler Ultimate Capacity =	6.10*1.50
=	9.15 kN

	Project :	Apollo Lattice Beam Box Lifting Rig			
CHLULHIUI SHLL Element : GKN Capacity			πωυ		
	Job Number :	X0224	By: ljb	Date: Nov 17	
	Document No :	001A	Checked: mmr	Date: Nov 17	HLHII WHIIE DESIGII

GKN Capacity

120.0mm x 60.0mm x 4.0 RHS S355

GKN Section

h =	120	mm
b =	60	mm
L =	2400	mm
$L_E =$	2400	mm
E =	210000	N/mm ²
f _y =	355	N/mm ²
$f_u =$	510	N/mm ²
A=	1360	mm ²
I _x =	2490000	mm^4
$I_y =$	1310000	mm ⁴
$W_{el,x} =$	41500	mm ³
$W_{pl,x} =$	51900	mm ³
$W_{el,y} =$	28900	mm ³
W _{pl,y} =	31700	mm ³
r _y =	25	mm

GKN X Bending Moment

 $M_{cr,x} = W_{p,l} f_y / \gamma_{m0}$

=

= 51.90*355/1000

18.42 kNm

 $W_{pl,x}$ = 51.90 cm³ f_y = 355 N/mm² γ_{m0} = 1

GKN Y Bending Moment

$$\begin{array}{cccc} M_{cr,y} = & W_{p,l} f_{y} / \gamma_{m0} & & & & \\ & & W_{pl,y} = & & 31.70 \ cm^{3} & & \\ & & f_{y} = & & 355 \ N/mm^{2} & & \\ & & & \gamma_{m0} = & & 1 & \\ & = & 31.70^{*} 355 / 1000 & & & \\ & = & & 11.25 \ kNm & & & \end{array}$$

ΩΟΙ ΟΙΙΙ ΟΤΙΟΝ ΟΙΙΓΕΤ	Project :	Apollo Lattice Beam Box Lifting Rig			
UHLUULHIIUII SHEEI	Element :	GKN Capacity			HWD
	Job Number :	X0224	By: ljb	Date: Nov 17	
	Document No :	001A	Checked: mmr	Date: Nov 17	HLHII WHIIE DESIGII
GKN Shear	V _{pl,Rd} =	A _v .f _y /sqrt(3)/γ _{m0}	A _v = =	Ah/(b+h) 906.67	mm ²
			$f_y = \gamma_{m0} =$	355 1.00	N/mm ²
	=	(906.67*355)/so 185.83	qrt(3)/1000 kN		
GKN Compression 6 Effective Length = 2.	Capacity 40m				
	$N_{b,Rd} =$	χ Α f _v / γ _{m1}			
	N _{cr} = =	π ² El/L ² Pl()^2*210000* 471,376.42	χ = φ= λ ⁻ = α = E= l= L= 1310000/(2400^ N	$\frac{1}{\phi + v\phi^{2} - \lambda^{-2}}$ 0.5(1+ α (λ^{-} -0.2) vA f _y /N _{cr} 0.21 210000 1,310,000 2,400 2)	+ λ^{-2} Table 6.1 N/mm ² mm ⁴ mm
	$\lambda^{-} =$	vA f _y /N _{cr}	A =	1,360	mm ²
	λ =	1.01	f _y =	355	N/mm ²
	φ=	$0.5(1+\alpha(\lambda^{-}-0.2))$	+ λ ⁻²)		
	ф=	1.10	α =	0.21	
	χ =	1/ φ+νφ²-λ ⁻²			
	χ =	0.66			
	$N_{b,Rd} =$ = $N_{b,Rd} =$	χ A f _y / γ _{m1} 0.66*1360*355/ 318.65	/1000 kN		

רחו רווו חדוחה רווררד	Project :	Apollo Lattice B			
UTILLULTI IIUII STIEEI	Element :	GKN Beam Loa	GKN Beam Loading		
	Job Number :	X0224	By: ljb	Date: Nov 17	חו חם ווווודב הבפופה
	Document No :	001A	Checked: mmr	Date: Nov 17	HLHII WHIIE DESIGII

Lattice Beam Loading

Beam Forces

Below are the unfactored forces applied to the 2No lattice beams from the winch:

10kN

Moment and Shear are calculated below:

$M_x =$	P*a		
		P =	10.00 kN
		a =	1.20 m
=	10.00*1.20		
=	12.00 kNm		
$M_Y =$	0.1*M _X		
		$M_X =$	12.00 kNm
=	0.10*12.00		
=	1.20 kNm		
V ₁ =	P*a/l		
		P =	10.00 kN
		a =	1.20 m
		I =	6.80 m
=	10.00*1.20/6.80		
=	1.76 kN		
$V_2 =$	Р		
2		P =	10.00 kN
=	10.00 kN	. –	

רבו רווו בדוחת כערבד	Project :	Apollo Lattice E	Beam Box Lifting	ı Rig	AIIN
	Element :	GKN Beam Loa	ading	•	Πωυ
	Job Number :	X0224	By: ljb	Date: Nov 17	חו חח וווווודר הרכוכה
	Document No :	001A	Checked: mmr	Date: Nov 17	HLHII WHIIE DESIDII
	Reaction of the GK	N leg is calculat	ed below.		
	R ₁ =	V ₁	V. =	1 76	kN
	=	1.76	kN	1.70	
	R ₂ =	V ₁ +V ₂	V. =	1 76	kN
		1 76 10 00	$V_1 = V_2 =$	10.00	kN
	=	11.76	kN		
	Below are the unfact	ctored forces ap	plied to the lattic	ce beam from wi	nd:
	M _Y =	P _w *L ² /8	P _w =	0.09	kN/m
		0 00*0 0000/0	L=	6.80	m
	=	0.09 0.80 2/8	kNm		(SLS)
	The total horizontal	load applied to	the lattice beam	is therefore:	
	$M_{Y} =$	1.20+0.52	L N L		
Lilitimata Baam Far	=	1.72	KINM		
	Ces				
	The ultimate beam	forces applied a	are below:		
Lattice Beam:	$M_X =$	30.00	kNm	.1	(ULS - FOS = 2.5)
	<	53.46	kNm	ok	
	$M_{Y} =$	4.30	kNm		(ULS - FOS = 2.5)
	<	5.32	ĸinm	OK	(4No Booms)
	V =	25.00	kN kN	ok	(ULS - FOS = 2.5)
	<	52.14	NIN	UK	
GKN Leg:	N –	20 ⊿∩	kN		(ULS - FOS - 25)
	<	318.65	kN	ok	(020 100 - 2.3)

	COLOUR ATION CULLET Project : Apollo Lattice Beam Box Lifting Rig				
UHLUULHIIUII SHEEI	Element :	Bracing & Cor	nnection Check		TIWD
	Job Number :	X0224	By: ljb	Date: Nov 17	חו חם וווווודר הרפופה
	Document No :	001A	Checked: mmr	Date: Nov 17	HLHII WHIIE DESIDII
Bracing & Connec	tion Check The head of the leg which are connecte	g is braced by r ed by a bolted h	aking scaffold tub nalf coupler:	bes	
Lifting point		Lattice conne with str	Beam Boxes acted together raight X-Beam spin	gots Weights	
Bracing Scaffold 1	Fube Loading From the wind calc	ulation the stro	m wind applies:		
	w _H =	0.0	9 kN/m		(Wind Calculation)
	Total Length = =	1.40+1.20+6.8 10.8	30+1.40 0 m		
	Wind Force = =	0.09*10.8 0.9	0 7 kN		
	10% Notional Load = =	0.10*10.0 1.0	0 0 kN		
Tot	al Horizontal Force =	1.9	7 kN		
	For a raking tube a	t 72° the applie	ed force is:		
	F= = Over 2No Braces = The axial capacity	w _H /(cos(radiar 1.97/(cos(radi 6.3 3.1 of a scaffold tu	ns(Φ))) ans(72))) 8 kN 9 kN be is as follows:		
A	llowable Axial Load = >	8.7 3.1	0 kN 9 kN	(T ok	G20 C.1 L = 2.50m)

Bracing Scaffold Tube Coupler Check

The capacity of a Class A coupler is stated below:

Coupler SWL =	6.10 kN		(TG20 T5.15)
>	3.19 kN	ok	

	Project : Apollo Lattice Beam Box Lifting Rig				
UTILULTIUII STILL Element : Bracing & Conne		& Connection Check		nwu	
	Job Number :	X0224 By: ljb Date: Nov 17			
	Document No :	001A	Checked: mmr	Date: Nov 17	HLHII WHITE DESIGIT

Bracing Coupler Bolt Check

Local

The half coupler is connected to the Lattice Beam by an M12 Grade 8.8 bolt:

M12 Grade 8.8 Shear Capacity =	27.50 kN	
>	3.19 kN	ok

Lattice Beam to GKN Leg Connection

The connection of the leg to the main boom is connected by 2No M12 bolts with Class A couplers & 2No Class A coupler GKN brackets. The reaction at the leg is calculated below:

Leg Reaction =	P/L*(L+a)		
		P =	10.00 kN
		L =	6.80 m
		a =	1.20 m
= (10.00/6.80)*(6.80+1.2	0)	
=	11.76 kN	- /	
FOS 2.50 =	29.41 kN		
	-		
M12 Grade 8.8 Shear Capacity =	27.50 kN		
2No =	55.00 kN		
>	29.41 kN	ok	
Class A Coupler Capacity =	9.15 kN		
4No =	36.60 kN		
>	29.41 kN	ok	
	-	-	
From tables for an M	112 Grade 8.8 bolt. bea	aring on a 5mm	S355 box wall is:
	, ,	3	
Bearing Capacity =	30.30 kN		
2No =	60.60 kN		
>	29.41 kN	ok	
Lifting Tube			
0			
Support Reaction =	10.00 kN		
The applied moment	t and shear to the lifting	g tube is calcula	ated below:
M =	PL/4		
		P =	10.00 kN
		L =	0.31 m
=	10.00*0.31/4		
=	0.78 kNm		
2.50 FOS =	1.94 kNm		
<	2.19 kNm	ok	
V =	P/2		
		P =	10.00 kN
=	10.00/2		
=	5.00 kN		
2.50 FOS =	12.50 kN		
<	48.18 kN	ok	

	Project :	Apollo Lattice Beam Box Lifting Rig			
רמו רו וו מדוחה כעובבד	Element :	Unfactored Reaction & Kentledge			πωυ
UILUULIIIUII JILLI	Job Number :	X0224	By: ljb	Date: Nov 17	
	Document No :	001A	Checked: mmr	Date: Nov 17	HLHI UHI It Utalui

Unfactored Reactions

Reactions below are unfactored and are in kN:

Support	X3
1	11.76
2	-1.76

Kentledge Required

A FOS of 3 is required on kentledge:

Kentledge Required =	3*1.76	
=	5.28 kN	
=	528.00 kg	
Kentledge Provided =	529.00 kg	
>	528.00 kg	ok

Downforce Applied to Roof

The unfactored downforce applied to the roof from the imposed load is stated below:

Unfactored Load on Roof =	11.76 kN
=	1,176.47 kg

Sliding Check

Sliding of the rig is assessed for storm wind loading:

0.97 kN	(Bracing & Connections)
0.40	
	0.97 kN 0.40

Kentledge required to resist sliding is therefore:

Kentledge Required =	0.97/0.40
=	2.43 kN
=	242.50 kg
<	529.00 kg

	Project :	Apollo Lattice Beam Box Lifting Rig Class A GKN Bracket			
LHLLULHIIUII SHEEI	Element :				πωυ
	Job Number :	X0224	By: ljb	Date: Nov 17	
	Document No :	001A	Checked: mmr	Date: Nov 17	HLHII WHIIE DESIGII

Class A GKN Bracket

Lattice Box Beam Reaction =	11.76 kN	
FOS 2.5 =	29.41 kN	
Over 4No Connections =	7.35 kN	
Class A Coupler Ultimate Capacity =	9.15 kN	
>	7.35 kN	ok

The moment and shear force applied to the bracket plate is calculated below:

M =	P*a		
		P =	7.35 kN
		a =	0.04 m
=	7.35*0.04		
=	0.29 kNm		
V =	Р		
		P =	7.35 kN
=	7.35 kN		

Moment and shear capacity of the 5mm plate is below:

$W_{pl} =$	bd ² /4		
		b =	0.50 cm
		d =	6.50 cm
=	0.5*6.5^2/4		
=	5.28 cm ³		
A =	b*d		
		b =	5.00 mm
		d =	65.00 mm
=	5.00*65.00		
=	325.00 mm ²		

	Project :	Apollo Lattice Beam Box Lifting Rig			
UHLUULHIIUII SHEEI	Element :	Class A GKN Bracket			TIWD
	Job Number :	X0224	By: ljb	Date: Nov 17	חו חם וווווודר הרפופה
	Document No :	001A	Checked: mmr	Date: Nov 17	ALTII WHITE DESIDII
Plate Bending Mom	ient				
	IVI _{cr,x} =	νν_{p,I}.r_y/γ_{m0}			2
			VV _{pl,x} =	5.28	cm [°]
			f _y =	275	N/mm ²
			γ _{m0} =	1	
	=	5.28*275/1000			
	=	1.45	kNm		
	>	0.29	kNm	ok	
Plate Shear					
	V _{pl,Rd} =	$A_v.f_y/sqrt(3)/\gamma_{m0}$			
			A _v =	0.80*A	
			=	260.00	mm ²
			f _y =	275	N/mm ²
			$\gamma_{m0} =$	1.00	
	=	(260.00*275)/sc	qrt(3)/1000		
	=	41.28	kN		
	>	7.35	kN	ok	
Bolt Reaction					
	R =	M/LA			
			M =	0.29	kNm
	_	0.20/0.077	LA =	0.077	m
	=	0.29/0.077	٧N		
	-	5.77			
Conservatively assume that the connection force is added to					
	bolt reactions:				
	Bolt Reaction =	3.77+7.35			
	=	11.12	kN		
	0 Cheer Caracit	400.00			
MZ4 Grade 8.	.o Snear Capacity =	136.00	KIN LAI	ok	
	>	11.12	KIN	UK	

	Project :	Apollo Lattice Beam Box Lifting Rig			
LHLLULHIIUII SHEEI	Element :	Summary			πωμ
	Job Number :	X0224	By: ljb	Date: Nov 17	
	Document No :	001A	Checked: mmr	Date: Nov 17	HLHII WHIIE DESIGII

Summary

All members have passed design checks for the specified loading.

Scaffold components must be as per TG20:13.

GKN steelwork grade must be S355.

Raking scaffold bracing is required to the top of the GKN leg.

GKN leg to beam connection must be made with a 2No M12 Grade 8.8 bolts with couplers.

Lattice beams are connected with spigots.

This design does not include a check of the existing structure.

529kg of kentledge is required at the rear of the rig.

Maximum unfactored load applied to the roof is 11.76kN.