

APOLLO SALES LTD PUBLIC ACCESS SCAFFOLD STEP DESIGN CHECK CALCULATIONS

Alan N White B.Sc., M.Eng., C.Eng., M.I.C.E., M.I.H.T.

Feb 2014

Somerset House 11 Somerset Place GLASGOW G3 7JT Tel:0141 354 6579 Fax:0141 354 6549

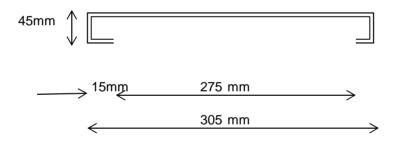
חח	ΛIII	ΛΤΙ	nn i	CHEET
CAL	CUL	HTH <u>.</u>		SHEET

Project :	Apollo Public Access Tread				
Element :	Brief				
Job Number :	R0197	By: anw	Date:Feb13		
Document No :	002	Checked:	Date:Feb13		

Brief

To carry out a design check on the Apollo Site Tread scaffold step to the relevant Standards and Codes.

Layout



The step varies in length, supplied up to 1.5m wide tread

The step is 305mm wide with a non slip grating, non-see through grating.

Section

From BS 5395 Stairs Ladders and walkways the min going is 225mm

Loading

BS EN 1991-1-1 Table NA.3

UDL w= 3.00 kN/m2
Point load W= 4.00 kN
on 200 by 200mm

OOLOULOTION OUTET	Project :	Apollo Public Access Tread		
CALCULATION SHEET	Element :	Brief		
	Job Number :	R0197	By: anw	Date:Feb13
	Document No :	002	Checked:	Date:Feb13

Factor of safety

From BS EN 12811-1

1.1.1.1 Partial safety factors for actions, gF

Except where stated otherwise, the partial safety factors, gF, shall be taken as follows:

Ultimate limit state

 $\gamma_F = 1,5$ for all permanent and variable loads

 $\gamma_F = 1.0$ for accidental loads

Serviceability limit state

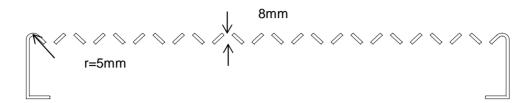
 $\gamma_{\rm F} = 1.0$

10.3.2.2 Partial safety factors for resistance gM

For the calculation of the design values of the resistances of steel or aluminium components the partial safety factor, . For components

$$y_{M} = 1,1$$

of other materials the partial safety factor, gM, is to be taken from relevant standards.



Project :	Apollo Public Access Tread			
Element :	Section properties			
Job Number :	R0197	By : anw	Date:Feb13	
Document No :	002	Checked:	Date:Feb13	

Section properties

From autocad massprop using the section as shown below This is conservative as the section chosen is the minimum

= 36.38 < 38.00

Section is class 2 so plastic design allowable

Material is mild steel fy=275N/mm2

Moment capacity

From BS EN 1993-1-1- 6.2.5

$$\begin{array}{lll} M_{c,Rd} = & W_{el} f_y / \gamma_{M0} & W_{el} = 8.24 cm3 \\ & f_y = 275 N / mm2 \\ & \gamma_{M0} = 1.1 \\ & = 8.24 ^* 275 / 1100 \end{array}$$

2.06 kNm

Shear capacity

From BS EN 1993-1-1- 6.2.6

$$V_{c,Rd} = A_v(f_y/sqrt(3))/\gamma_{M0}$$

$$Av = 2*45*2$$

$$= 180mm2$$

$$f_v = 275N/mm2$$

= 180*(275/sqrt(3))/1100 = **25.98 kN**

Lateral Torsional Buckling

From BS EN 1993-1-1- 6.3.2.1

As bending is about minor axis LTB verification is not required.

CAL	СШ	NΤ	INN	CIII	ТТ
LIIL	ՆՍԼ	Ш	IUH	ЭШ	ĦΙ

Project :	Apollo Public Access Tread				
Element :	Design				
Job Number :	R0197	By : anw	Date:Feb13		
Document No :	002	Checked:	Date:Feb13		

Loading

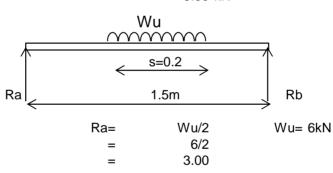
As before

UDL on stair w= 3.00 kN/m2

and point load W= 4.00 kN on 200mm by 200mm

Moment

so for UDL on 225mm wide stair with span of 1.6m


$$M_{Ed} = \gamma.w.B.L^2/8$$
 $\gamma = 1.5$

w= 3kN/m2 B= 0.305m L= 1.5m

= 1.5*3*0.305*1.5^2/8 = **0.39 kNm**

for a point load of 4kN over a width of 200mm

 M_{Ed} = Ra.L/2-Wu.s/4

s= 0.2mWu= 6kN

L= 1.5 m

= 3*1.5/2-6*0.2/4 = **1.95 kNm**

from previous calculations

 $M_{c,Rd}$ = 2.06 kNm > 1.95 ok

CALCULATION SHEET

Project :	Apollo Public Access Tread				
Element :	Design				
Job Number :	R0197	By : anw	Date:Feb13		
Document No ·	002	Checked ·	Date:Feb13		

Shear

so for UDL on 225mm wide stair with span of 1.6m

$$V_{Ed} = \gamma.w.B.L/2$$
 $\gamma = 1.5$

w= 1kN/m2 B= 0.225m L= 1.6m

= 1.5*1*0.225*1.6/2 = 0.27 kN

for a point load of 4kN over a width of 200mm

from previous calculations

Deflection

for central point load of 1.5kN

From BS EN 12811-1 the max deflection is

d=	L/100	L= 1600mm
=	1600/100	
=	16.00 mm	
>	5.04	ok

	Project :	Apollo Public Aco	cess Tread	
CALCULATION SHEET	Element:	Design		
	Job Number :	R0197	By : anw	Date:Feb13
	Document No :	002	Checked ·	Date Feb13

Rotation

If the loading was eccentric, ie at the step edge the moment applied to the support couplers would be

M= Wu.la Wu= 2.25kN

la= 0.225/2

= 0.11m

= 2.25*0.11 = 0.248 kNm

This is conservative as the load is spread over a patch not a point.

this is resisted by two couplers so the twisting moment is

M= 0.124 kNm

From BS EN 12811-1 the resistance to rotation of a double coupler is

Mr= **0.130 kNm**

> 0.124 ok

If the load is considerd as a patch 200mm wide on a 225mm wide step then the eccentricity

la= 225/2-200/2

= 12.50 mm

and M= Wu.la

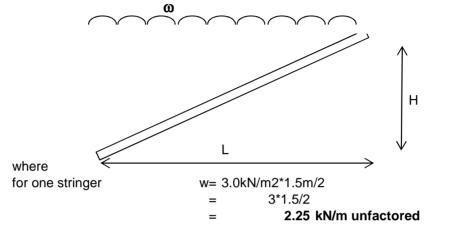
= 2.25*0.0125

= 0.03 kNm

<< 0.13 ok

ſΩI	ſIII	Д	INN	СH	EET
UΠL	_601	ш	IIUII	ווטו	TT.

Project :	Apollo Public Access Tread				
Element :	Stringer				
Job Number :	R0197	By : anw	Date:Feb13		
Document No :	002	Checked:	Date:Feb13		



Length of stringer

From BS EN 12811-1, the load on the stringer is:

The structure of the stairways shall be capable of supporting a uniformly distributed load of 1.0~kN/m2 on all treads and landings within a height of 10~m. but the load on the tread is 3kN/m

so the stringer will carry the load as shown below

and L= length between stringer supports

H= height varies with angle between 30 and 55 deg

taking allowable values from TG20 as

Moment M= 1.1 kNm Axial P= varies as below

Angle °	Moment kNm	Axial kN	Combined	Length m
30	0.84	3.37	1.00	2.59
35	0.83	3.79	1.00	2.40
40	0.81	4.17	1.00	2.21
45	0.80	4.51	1.00	2.00
50	0.79	4.82	1.00	1.80
55	0.78	5.09	1.00	1.59

Above table found by Excel Goal seeking

Project :	Apollo Public Access Tread			
Element :	Summary			
Job Number :	R0197	By : anw	Date:Feb13	
Document No:	002	Checked:	Date:Feb13	

Summary

The scaffold step has been checked for the required loading and found to be adequate for a maximum width of 1.5m.

Loading from BS EN 1991-1-1 Table NA.3

 UDL
 w=
 3.00 kN/m2

 Point load
 W=
 4.00 kN

on 200 by 200mm

The stringer which supports the steps requires to be supported by standards at a spacing as shown in the table below dependant on the angle of the stair.

Angle	Standard	
Degrees	Spacing m	
30	2.59	
35	2.40	
40	2.21	
45	2.00	
50	1.80	
55	1.59	